

ROYAUME DU MAROC

MINISTERE DE L'EDUCATION NATIONALE DE L'ENSEIGNEMENT SUPERIEUR DE LA FORMATION DES CADRES ET DE LA RECHERCHE SCIENTIFIQUE Centre National de l'Evaluation et des Examens

Examen National du Brevet de Technicien Supérieur Session de mai 2009

Pa	ge
1	/
/	່າ

Filière: BATIMENT Durée: 2 H
Épreuve de: PHYSIQUE Coefficient: 15

0.75

1.5

EXERCICE 1 (10 points)

- I. On considère une source sonore supposée ponctuelle émettant un son pure de fréquence 10³Hz
- 1.1 Quelle est la nature de l'onde sonore?
- 1.2 Définir un son pur, un bruit et la pression acoustique?
- 1.3 En appliquant la relation fondamentale de la dynamique sur une tranche d'air on trouve :

$$\frac{\partial^2 \psi}{\partial t^2} \frac{1}{\rho} \frac{\partial \rho}{\partial x}$$

et si On suppose que l'air (pris comme gaz parfait) connaît une transformation adiabatique lors du passage de l'onde sonore.

Alors la vitesse de propagation du son dans l'air a pour l'expression

$$C = \sqrt{\frac{\gamma RT}{M}}$$

- Que signifie Ψ et p
- Calculer sa valeur pour une température de 298 K. en déduire la longueur d'onde associée à cette onde.

on donne $M_{air} = 29 \text{ g.mol}^{-1} \text{ et } \gamma = 1,4. \text{ R} = 8,3 \text{ (SI)}.$

2. la source a une puissance $P_u=1W$. émet dans toutes les directions de façon uniforme 2.1. calculer l'intensité de l'onde à une distance de 2m. en déduire la pression acoustique en ce point. on donne $\rho=1,3\ kg.m^{-3}$

2.2. calculer les niveaux acoustiques d'intensité, L_I et de pression L_P . On donne I_0 = 10^{-12} w/m², p_0 = 2.10^{-5} Pa .

3. on remplace la source par une autre source émettant un bruit. L'analyse de ce bruit par un sonomètre révèle les valeurs suivantes, échantillonnées selon les bandes d'octaves,

Fréquence en Hz	125	250	500	1000	2000	4000
Niveau L en dB	84,3	80,5	77,3	72	69,3	68

et si L₁; L₂; L₃; L₄; L₅; L₆ sont les niveaux sonores de ces bandes.

Calculer le niveau sonore global L du bruit.

4. On utilise la première source pour améliorer l'environnement acoustique d'une salle, les 4 murs de la salle ont une surface totale de 80m², dont 20m² est en verre (vitres et portes), les surfaces du sol et du plafond sont égales à 50m² chacune,

le volume de la salle étant V=120m³

- 4.1 Déterminer la surface de sabine de la salle.
- 4.2 Calculer le temps de réverbération de la salle.
- 4.3 Ce temps est inacceptable, on recommande le temps de réverbération suivant Tr=0,5s, c'est pourquoi on couvre le plafond par une dalle acoustique.

Quelle est la nouvelle valeur de la surface de sabine? En déduire le coefficient d'absorption α ' de la dalle.

On donne les coefficients d'absorption à 1000Hz

- Les murs en béton $\alpha_1=0.04$
- La porte et les fenêtres en verre $\alpha_2=0,012$
- Le sol et le plafond en bois α_3 =0,07.

1

1

1.5

1,25

	Page :BATIMENTÉpreuve de:PHYSIQUE
	EXERCICE'2 (5points)
	On considère le montage suivant :
1.5	(E,r) RI RI B 1. a) Trouver la force électromotrice du générateur du Thévenin équivalent entre A et B du circuit ci-dessus, ainsi que sa résistance interne
1 ,-	 b) En déduire le courant qui traverse la résistance R. (On donne E=6V, R1=100Ω et R= 200Ω, r= 10Ω)
1	2. Quelle est la différence entre une substance paramagnétique et diamagnétique.
1.5	 3. En appliquant la loi du BIOT et SAVART ou le théorème d'AMPERE Retrouver l'expression de l'induction magnétique crée par un fil infini parcouru par un courant I en un point distant de R par rapport au fil. (On donne R=1 cm , I=10A , μ₀ = 4π10⁻⁷ (SI))
	EXERCICE 3 (5 points)
	Sur le réseau 230v/400v; 50HZ, sans neutre, on branche en triangle trois récepteurs identiques d'impédance Z= 150 k Ω et k=cos(φ)=0.8
1	1) Dessiner le schéma de couplage et placer les grandeurs i ₁ , i ₂ , i ₃ j ₁₂ , j ₂₃ ,j ₃₁ ,u ₁₂ ,u ₂₃ et u ₃₁
0.5	2) Calculer la valeur du courant j sur un élément de ce récepteur.
0.5	3) En déduire la valeur efficace I de l'intensité du courant de la ligne.
1.5	4) Calculer la puissance active P, la puissance réactive Q et la puissance apparente S.
0.5	5) On veut mesurer P et Q à l'aide de deux wattmètres Placer les deux wattmètres sur un schéma
1	6) On veut relever le facteur de puissance de cette installation à k=0.95 Calculer la valeur de la capacité d'une batterie de condensateurs couplés en triangle.