

Examen National du Brevet de Technicien Supérieur Session Mai 2018

- Sujet -

Pa	age
1	
	22

Filière:	Mouliste
Épreuve de:	Conception d'outillage et CAO

Durée :	4Heures
Coefficient :	30

Le dossier comprend :

- Documents sujet (couleur blanche)
- Documents techniques (couleur jaune)
- documents réponses (couleur verte)
- barème de notation (couleur rouge)

Le sujet comporte trois parties :

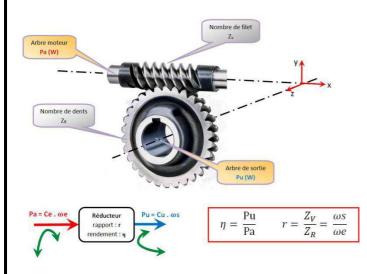
PARTIES	DUREE RECOMMANDEE
PARTIE 1: Présentation de système d'étude	
PARTIE 2 : Analyse Fonctionnelle	15min
PARTIE 3 : Calcul de conception	1H30min
PARTIE 4: Etude de moulage	45min
PARTIE 5 : Travail graphique	1H20min

Lecture de sujet :10min

Toutes les parties sont indépendante

- Calculatrice électronique de poche ,alphanumérique à fonctionnement autonome ,non imprimante ,autorisée .
- L'usage de tout ouvrage de référence de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

PRESENTATION DE SYSTEME D'ETUDE :


Réducteur roue et vis sans fin

1-1- Fonctionnement du système:

C'est un type de réducteur souvent utilisé dans les cas où une très grande démultiplication est recherchée ou lorsque l'irréversibilité du système assure un fonctionnement correct.

1-2-Caractéristiques techniques

- → Les arbres d'entrée et de sortie sont perpendiculaires,
- → Rapport de réduction compris entre 2,5 et 100,
- → Arbre de sortie plein ou creux
- → Irréversibilité pour les rapports élevés.

1-3-Avantages:

- ∠ Compacité notamment pour les rapports élevés,
- ↗ Niveau sonore réduit, exempt de vibration, donnant une bonne qualité d'entraînement,
- ∠ Charge radiale admissible élevée en sortie,

- → Bonne capacité d'absorption des surcouples,
- → Peut être utilisé en combiné ,pour des grands rapports de réduction (vitesse très faible),
- → De plus en plus utilisés en combinaison avec d'autres réducteurs d'une part, et d'autres trains d'autre part afin d'améliorer le rendement.

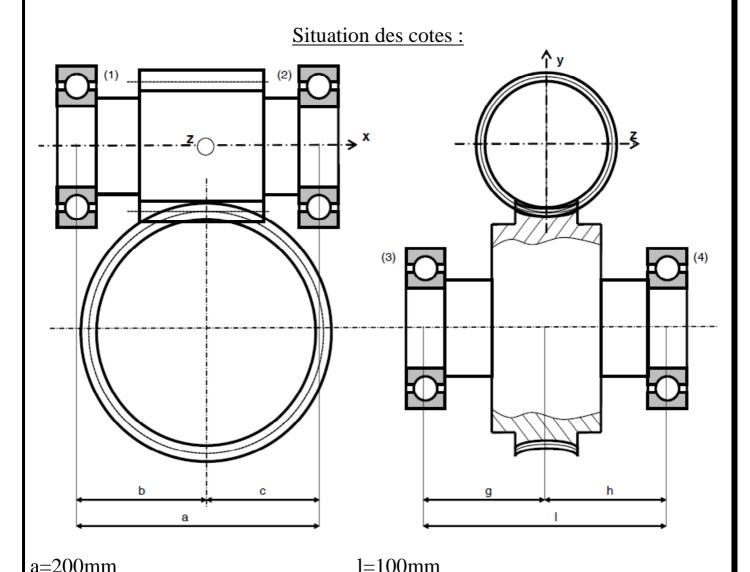
1-4-Inconvénients :

- ➤ Rendement variable en fonction du rapport de réduction et de la vitesse,
- ➤ Échauffement plus important que dans d'autres technologies,
- ➤ Roue bronze pouvant engendrer une usure.

1-5-Principales applications

Convoyeurs, Treuils, applications à vitesse lente

<u>1-3- Cahier de charge :</u>


Le but de ce travail est de concevoir un réducteur roue et vis sans fin transmettant une puissance motrice Pm=1.25Kw a 1500tr/min de durée de vie souhaitée de 25000 heures de fonctionnement a raison de 12 heures de travail par jour avec un rapport de réduction de 1/60 et un rendement de 0.95.

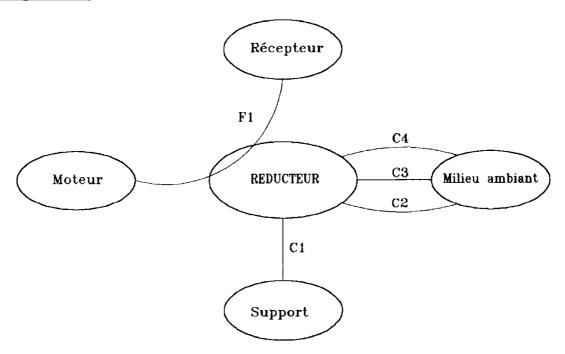
- -La vis sans fin a un filet en acier allié(25CrMo4) montée sur 2 roulements a billes a contact radial.
- La roue est en bronze, de diamètre primitif 200mm, montée sur 2 roulements a billes a contact radial.

L'angle de pression réel : αn=20°.

L'angle d'hélice : β =15°.

b=c=100mm

g=h=50mm


Filière: Mouliste Épreuve de : Conception d'outillage et CAO

Page 4 22

Partie 2 : Analyse fonctionnelle

GRAPHE D'INTERACTIONS:

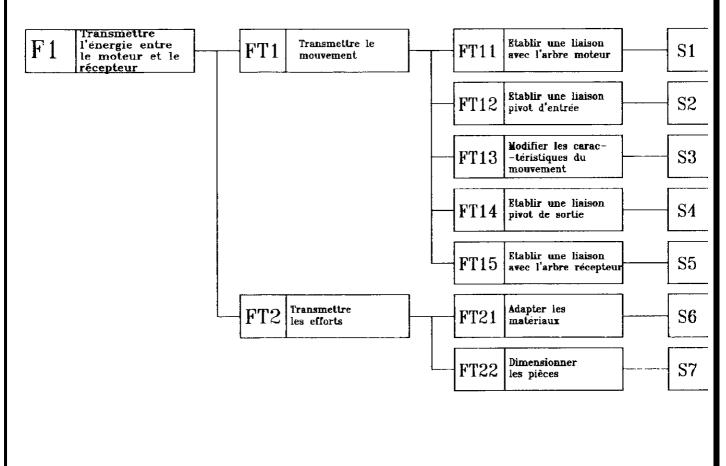
Séquence : utilisation

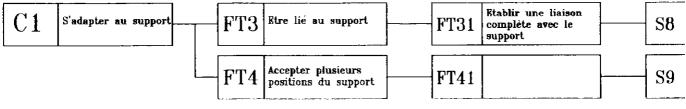
FONCTIONS DE SERVICE:

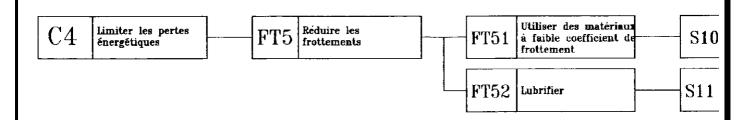
• F1: transmettre l'énergie du moteur au récepteur.

CONTRAINTES:

- C1: s'adapter au support.
- C2: ne pas agresser le milieu ambiant.
- C3 : résister au milieu ambiant .
- C4 : limiter les pertes énergétiques .


Sujet de l'Examen National du Brevet de Technicien Supérieur


- Session de Mai 2018 -


Filière: Mouliste Épreuve de : Conception d'outillage et CAO

Page 5 22

FAST DE DESCRIPTION DU REDUCTEUR

2-1:sur document (DR1) compléter les solutions techniques de FAST du réducteur a roue et vis sans fin.

Partie 3: Calcul de conception

3-1:Définition de la roue et de la vis sans fin.

- 3-1-1:Calculer la puissance ,la vitesse de rotation et le couple de sortie de réducteur .
- 3-1-2: On prend k=7et coefficient de sécurité s=5.

A l'aide de document technique DT1, déterminer le module de la roue m_n

3-1-3:A l'aide de document technique (DT2) et (DT3) compléter le tableau de caractéristique de la roue et de la vis (Document réponse DR2)

3-2 Etude statique

- 3-2 -1: Modéliser l'arbre d'entrée (schéma cinématique détaillé).
- 3-2 -2:En appliquant le principe fondamentale de la statique ,déterminer les torseurs statiques des liaisons.

3-3 : Etude résistance des matériaux

- 3-3 -1:Déterminer le torseur de cohésion le long de l'arbre d'entrée.
- 3-3-2 : on adopte un coefficient de sécurité s= 3.

En appliquant le critère de Von Mises: $\sigma eq = \sqrt{\sigma^2 + 3\tau^2}$

Vérifier que d=20mm satisfait la condition de résistance.

3-4 : Détermination des roulements

3-4 -1: les efforts exercés sur les roulements de guidage de la vis sont:

Roulement a droite:
$$\{T(C)\}=\begin{cases} 0 & |0\rangle \\ 515.32 & |0\rangle \\ 873.24 & |0\rangle \\ C \end{cases}$$
 Roulement a gauche $\{T(A)\}=\begin{cases} 3846.44 & |0\rangle \\ 515.32 & |0\rangle \\ 576.12 & |0\rangle \\ A \end{cases}$

Les roulements utilisés ont d=20mm,D=52mm B=15mm.

A l'aide des documents techniques (DT4a) et (DT4b), vérifier la durée de vie des roulements utilisés pour le guidage de l'arbre d'entrée.

3-4-2 conclure.

Partie 4: Etude de Moulage

Sur document technique DT5a et DT5b on vous propose un exemple de dessin d'ensemble de système réducteur roue et vis sans fin.

4-1: Transfert de chaleur:

(Fabrication de l'empreinte d'un moule :électroérosion par défonçage)

Dans cette partie on s'intéresse à la fabrication de l'ébauche d'un moule
pour réaliser le couvercle (6) par électroérosion .La reproduction de
forme par défonçage consiste à utiliser un outil de forme et à le déplacer
selon une direction ,la matière est alors enlevée progressivement.

<u>Etude des échanges thermiques entre le générateur et la matière</u> <u>Données:</u>

-masse volumique de l'acier

 ρ_{acier} =7850 kg.m⁻³.

-température de fusion de l'acier

 $\theta_{\rm f} = 1500 \, {}^{\rm 0}{\rm C}$.

-capacité thermique massique de l'acier a l'état solide

 $c_{acier} = 460 J Kg^{-1}.K^{-1}.$

-masse m d'acier fondue

m = 440g.

Le métal utilisé dans cette partie est initialement à une température θ_i =20 $^{\circ}C$.

- 4-1-1. Exprimer la quantité de chaleur Q_1 absorbée par la masse m de métal pour augmenter sa température de la température initiale à la température de fusion . Calculer Q_1 .
- 4-1-2. La quantité de chaleur totale transmise au moule Q_t est due à la quantité de chaleur Q_1 et à la quantité de chaleur Q_2 nécessaire pour sa transformation d'état de l'état solide à l'état liquide .

Déduire la quantité de chaleur Q_2 absorbée par la masse m de métal nécessaire à sa complète fusion, sachant que $Q_t = 39 \times 10^4$ (joule),

- 4-1-3. Exprimer la quantité de chaleur Q_3 en fonction de la masse de métal m et de la chaleur latente de fusion L_f de l'acier.
- 4-1-4. Déterminer la chaleur latente de fusion L_f de l'acier .

4-2:Mécanique de fluide :

Filière: Mouliste

Evacuation des résidus de matière

Pour réaliser l'évacuation des résidus de matière ,on utilise de l'huile sous pression injectée d'un canal de diamètre intérieur D_2 dans l'électrode, à partir d'une canalisation de diamètre intérieur D_1 .

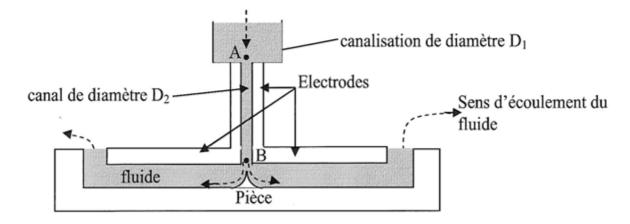


Figure 1 : schéma de principe

Les différences de hauteur sont négligées. L'étude pourra être réalisée à partir de la figure 4 simplifiée et réorientée pour intégrer cette approximation.

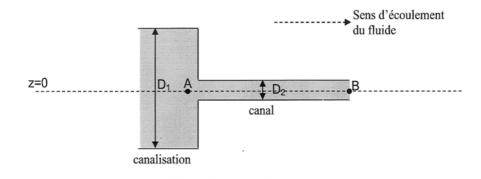


Figure 2 : schéma d'étude

Épreuve de : Conception d'outillage et CAO

On souhaite obtenir une pression p_B au point B en sortie de canal telle que l'évacuation des résidus se fasse correctement. La pression p_A au point A dans la canalisation est réglable de 3 à 10 bars.

Données:

- -- $1bar = 10^5 Pa$
- --l'huile est considérée comme un fluide incompressible parfait et son régime d'écoulement est permanent.
- --masse volumique de l'huile

 $\rho_{huile} = 920 \text{ kg.m}^{-3}$.

--vitesse du fluide au point A

 $v_A = 2 \text{ m.s}^{-1}$.

--pression du fluide au point B

 p_B =2 bars.

--débit volumique dans le canal et la canalisation

 $Q_v = 2.1 \text{ L.min}^{-1}$.

--diamètre D₂ du canal

 $D_2 = 1.5 \text{ mm}$

- 4-2-1. Calculer l'air S_1 de la section de la canalisation; en déduire le diamètre D_1 de la canalisation.
- 4-2-2.calculer la vitesse d'expulsion v_B du fluide au point B.
- 4-2-3.En utilisant l'équation de Bernoulli pour un fluide parfait appliquée aux points A et B, calculer la pression p_A dans la canalisation pour obtenir une pression p_B égale à 2 bars.
- 4-2-4. Vérifier que les conditions de réglage de la pression sont remplies.

Partie 5: Travail graphique:

Sur document technique DT5a et DT5b on vous propose un exemple de dessin d'ensemble de système réducteur roue et vis sans fin incomplet.

- 5-1 : sur document réponse DR4 ,compléter le montage des roulements de guidage de la vis sans fin en assurant l'étanchéité .
- 5-2 : sur document réponse DR3 , dessiner le dessin de définition de couvercle 6
- 5-2-1- Vue de face en coupe .
- 5-2-2- Vue de dessus.

Filière: Mouliste

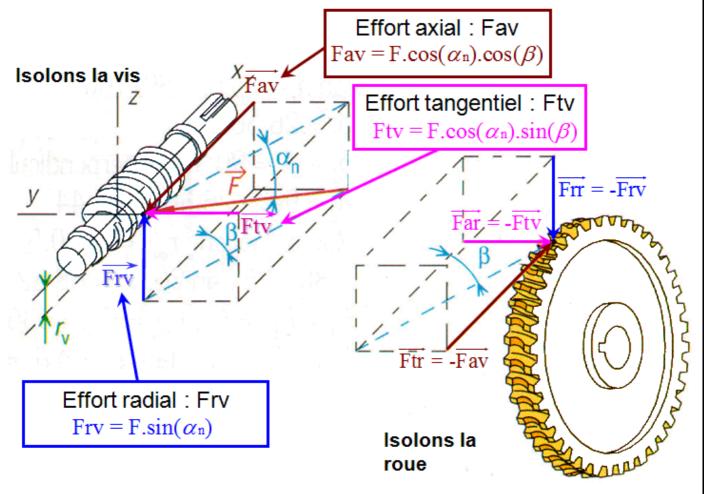
5-2-3-Faire la cotation dimensionnelle nécessaire.

Filière: Mouliste

Épreuve de : Conception d'outillage et CAO

En première approximation, le module peut être calculé par la formule :

$$m = 2,34 \sqrt{\frac{\|\vec{Ft}\|}{k \cdot Rp_e}}$$


||Ft|| = force tangentielle en newtons.

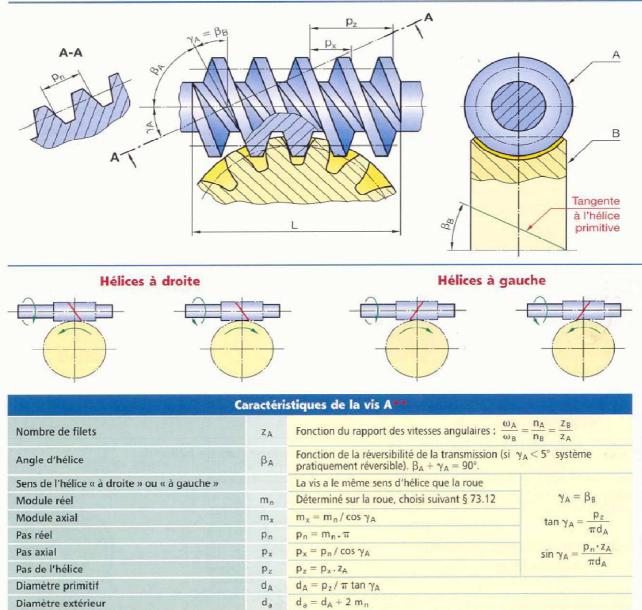
k = coefficient de largeur de denture, valeur choisie entre 6 et 10.

Rp_e = résistance pratique à l'extension du matériau de la dent en mégapascals.

Modules normalisés							
663 3 3 1 1	0,3	0,5	0,8	1	1,25	1,5	2
Série principale	2,5	3	4	5	6	8	10

Dénomination et symbole	Romin (MPa)
Fonte à graphite lamellaire FGL 200	200
Fonte à graphite aphérolidal FGS 600. 3	370
Acier non allié (E 24) S 235	215
Acter attlé (25 CD 4) 25Cr Mo 4	700
Bronze : Cu Sn 8P	390
Cupro-aluminium Cu Al 10 Ni S Fe 4	250

Frv: Effort radial sur la vis Fav: Effort axial sur la vis Ftv:Effort tangentiel sur la vis Frr: Effort radial sur la roue Far: Effort axial sur la roue Ftr:Effort tangentiel sur la roue

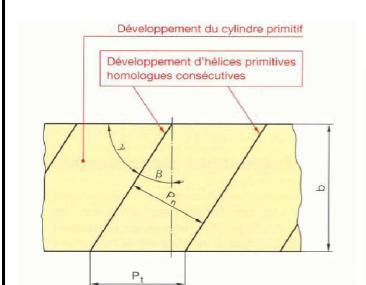

Formule de calcul de Torseur et de module d'une denture

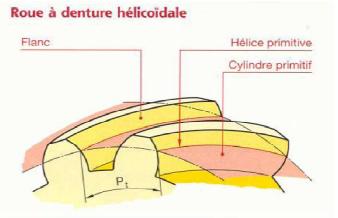
Document technique DT1

Diamètre intérieur Longueur de la vis

Filière: Mouliste Épreuve de : Conception d'outillage et CAO

Mêmes formules que pour une roue à denture hélicoïdale (§ 73.14) en tenant compte : - Angle d'hélice $\beta_B = \gamma_A$ et de même sens que pour la vis et la roue hélicoïdale (§ 73.14) en tenant compte : - Angle d'hélice $\beta_B = \gamma_A$ et de même sens que pour la vis et la roue hélicoïdale (§ 73.14) en tenant compte : - Angle d'hélice $\beta_B = \gamma_A$ et de même sens que pour la vis et la roue hélicoïdale (§ 73.14) en tenant compte : - Module apparent de la roue égal au module axial de la vis - Angle d'hélice $\beta_B = \gamma_A$ et de même sens que pour la vis et la roue hélicoïdale (§ 73.14) en tenant compte : - Module apparent de la roue égal au module axial de la vis - Angle d'hélice $\beta_B = \gamma_A$ et de même sens que pour la vis et la roue hélicoïdale (§ 73.14) en tenant compte : - Module apparent de la roue égal au module axial de la vis


L ~ 5p_x


Caractéristiques de la roue B

Definition de la vis sans fin

 $d_f = d_A - 2.5 \, m_n$

Filière: Mouliste

Module réel	m _n	Déterminé par la résistance des matériaux et choisi dans les modules normalisés (§ 73.12)**.				
Nombre de dents	Z	Déterminé à partir des rapports des vitesses angulaires : $\frac{\omega_A}{\omega_B} = \frac{n_A}{n_B} = \frac{z_B}{z_A}$				
Angle d'hélice	β	Choisi habituellement entre 20° et 30°.				
Sens de l'hélice « à droite » ou « à gauche »	-	Pour un même engrenage, les hélices des roues sont de sens contraire.				
Module apparent	m _t	$m_t = m_n / \cos \beta$				
Pas apparent	Pt	$P_t = m_t \cdot \pi$				
Pas réel	Pn	$P_n = m_n \cdot \pi$ $P_n = P_t \cdot \cos \beta$				
Pas de l'hélice primitive	Pz	$P_z = \pi_d / \tan \beta$				
Saillie	ha	$h_a = m_n$				
Creux	hf	$h_f = 1,25 \text{ m}$				
Hauteur de dent	h	$h = h_a + h_t = 2,25 m_p$				

Diamètre primitif	d	$d = m_t \cdot z$
Diamètre de tête	da	$d_a = d + 2 m_n$
Diamètre de pied	df	$d_f = d - 2.5 m_n$
Largeur de denture	b	La transmission du mouvement est continue si, le contact cessant entre un couple de dents, un autre couple de dents est déjà en prise, soit : $b \geqslant \frac{\pi \cdot m_n}{\sin\beta}$

Définition de la roue hélicoïdale

Épreuve de : Conception d'outillage et CAO

$$L_{10} = \left[\frac{C}{P}\right]^n$$

L₁₀: durée de vie du roulement en millions de tours

C: charge dynamique de base

P : charge équivalente exercée sur le roulement

n = 3 pour les roulements à billes

n = 10/3 pour les roulements à rouleaux

$$L_{10H} = \frac{L_{10}.10^6}{60.N}$$

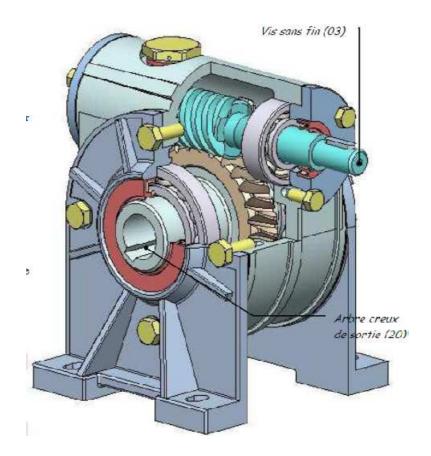
 L_{10} : millions de tours N: vitesse de rotation en tr/min.

413	ACCEPTANCE.		Vale	eurs des co	efficients &	et Y		al Harrison	Seal I
			roule	ements à bille	es à contact i	radial		AL PER	
	$\operatorname{si} \frac{F_{a}}{F_{r}} \leq$	€ e alors	P = F _r		S	$i\frac{F_a}{F_r} > e$	alors P=	0,56.F _r + Y.F _r	1
		les coefficien	ıts <i>e</i> et <i>y</i> ci-d	lessus dépen	dent du rapp	ort $\frac{F_a}{C_0}$ (voi	r ci-dessous		
$\frac{F_a}{C_0}$	0,014	0,028	0,056	0,084	0,110	0.170	0.280	0.420	0,560
		mary rates	To Street				-	The second	
е	0,19	0,22	0,26	0,28	0,30	0,34	0,38	0,42	0,44

Calcul de roulement

- Session de Mai 2018 -

Filière: Mouliste Épreuve de : Conception d'outillage et CAO


Page 15 22

				exécutio	norm	ale					exéc	utions	particu	lières u	suelles	
dim	ensions	princip	oales	vitesse	série	épaule	ements		rges pase	flaso	ques	joi	nts		ainure d'	
d mm	D mm	B mm	r mm	limite tr/min graisse	de base	d _a maxi	mm D _L mini	C daN	C ₀	d'un côté	des 2 côté	d'un côté	des 2 côtés	D _S	e _s	L.
3	9	3	0,3	40 000	10			50	20	*	*	*	*			
3	10	4	0,3	40 000	02	5,1	7,9	70	25	*	*	-	*			
4	13	5	0,4	38 000	02	5,7	11,4	130	50	*	*		*			
•	16	5	0,5	36 000	03	6,5	12,5	190	70	*	*	*	*			
5	16	5	0,5	36 000	02	7,1	13,9	190	75 105	*	*	*	*			
	19	6	0,5	32 000	03	8,0	15,5	245	105		*					
6	19	6	0,5	32 000	02		16,9	000000000								-
7	19	6	0,5	30 000	10	9.2	16.9	245	105	*	*	*	*			
	22	7	0,5	30 000	02	10,5	19,8	330	135	3 4 0	*		•			
8	22	7	0,5	30 000	10	10,5	19,3	330	135	1.	*	*	*			
9	24	7	0,5	30 000	10	11,5	21,9	365	165		*		*			
3	26	8	1	28 000	02	13,1	21,9	460	196	*	*	180	*			
10	26	8	0,5	28 000	10	12,8	23,6	460	196	*	*	*				
10	30	9	1	26 000	02	14,6	25,8	600	265		*		*	34,7	1,02	3,1
	35	11	1	26 000	03	16,6	29,2	810	345	*	*	*	*	39,7	1,02	3,1
12	28	8	0,5	26 000	10	14,8	25,6	510	240	*	*	*				
	32	10	1	24 000	02	16,5	27,9	690	310	*	*	*	*	36,7	1,02	3,1
	37	12	1,5	20 000	03	18,1	31,3	970	420	*	*	*	*	41,3	1,02	3,1
15	32	9	0,5	23 000	10	18,3	29,1	560	285	*	*	*	*	36,7	1,02	3,1
	35	11	1	20 000	02	19,6	31,0	770	375	*	*	*	*	39,7	1,02	3,1
	42	13	1,5	18 000	03	21,2	36,1	1 130	540	*	*	*	*	46,3	1,02	3,1
17	35	10	0,5	22 000	10	20,7	31,7	600	325	*	*	*	*	39,7	1,02	3,1
	40	12	1	18 000	02	22,4	35,0	960	475	*	*			44,6	1,02	3,1
	47	14	1,5	16 000	03	24,5	40,3	1 350	660		*	*	*	52,7	1,02	3,5
	62	17	2	12 000	04	30,3	48,7	2 270	1 080		*			67,7	1,60	4,9
20	42	12	0,5	18 000	10	25,1	37,1	940	500		*	*	*	46,3	1,02	3,1
-77	47	14	1,5	15 000	02	26,2	41,1	1 280	660	*	*	*.	*		1,02	
	52	15	2	14 000	03	27,9	44,5	1 590	790	*	*	*	*	57,9	1,02	3,5
	72	19	2	10 000	04	37,4	69,6	2 950	1 550	*				78,6	1,60	4,9
25	47	12	0,5	16 000	10	30,1	42,1	1 010	590	*	*	*	*	52,7	1,02	3,1
	52	15	1,5	14 000	02	31,4	46,3	1 400	790	*	*	*	*	57,9	1,02	3,5
	62 80	17 21	2,5	12 000 9 000	03	34,9 42,1	53,1 66,3	2 370 3 600	1 220	*	*	*	*	67,7 86,6	1,60 1,60	4,9
20		13		13 000	10	36,2	48,8	1 260	820		*	*	*	60,7	1,02	3,1
30	55 62	16	0,5 1,5	10 000	02	38,0	54,6	1 950	1 130				*	67.7	1,60	4,9
	72	19	2	9 500	03	41.7	62,3	2 800	1 580		-	*	4	78,6	1,60	4,9
	90	23	2,5	8 000	04	47,0	73,0	4 350	2 380	*	*			96,5	2,36	5,7
35	62	14	0,5	11 000	10	41,2	56,2	1 600	1 030		*	*	*	67,7	1,60	3,7
	72	17	2	9 100		43,8	63,7	2 550	1 530	*	*	*		78,6	1,60	4,9
	80 100	21 25	2,5 2,5	8 500 6 700	2000	46,4 53,1	68,4 81,9	3 350 5 500	1 910 3 100		*	*	*	86,6 106,5	1,60 2,36	4,9 5,7
40	7.74.00.007	2388					CH-128.383	1 740	1 150	*	*	*		74,6	1,60	4,1
40	68 80	15 18	0,5	10 000 8 500		46,5 49,8	61,9 70,7	2 900	1 790		*		*	86,6	1,60	4.9
	90	23	2.5	7 500	03	52,9	77,6	4 050	2390	*	*	*	*	96,5	2,36	5,7
	110	27	3	6 300		59,6	90,4	6 400	3 650	*	*			116,6	2,36	5,7

Tableau de choix de roulement

Document technique DT4b

Épreuve de : Conception d'outillage et CAO

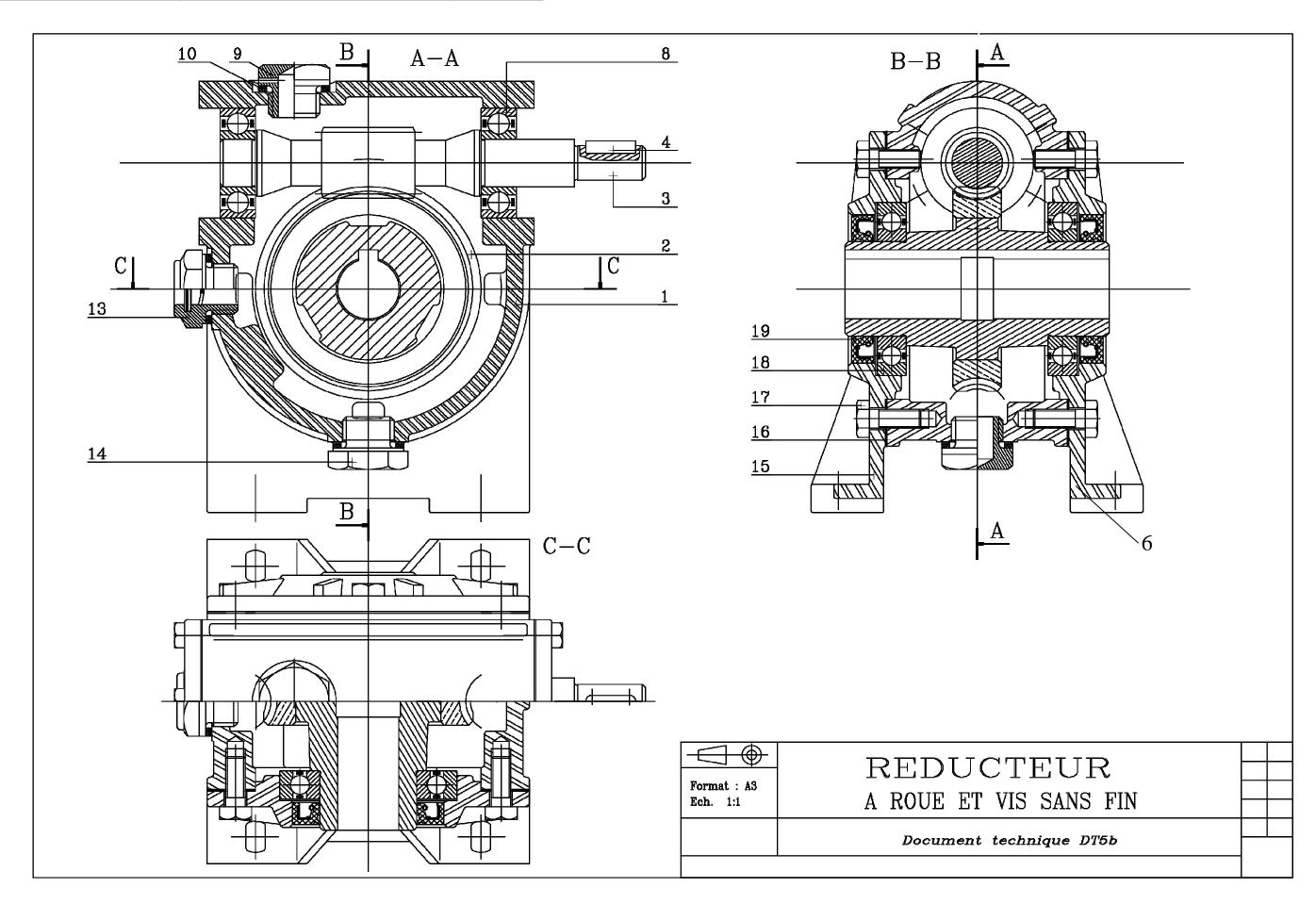
Nomenclature

Filière: Mouliste

Rep	Nbre	Désignation	Matière	Observation
1	1	Carter	AS9G	
2	1	Roue creuse	CuSn12G	
3	1	Vis sans fin	16NC6	
4	1	Clavette parallèle, forme A DE 4x4x15,5		STEFA
5	1	Joint à lèvre 15x24x27		
6	1	Couvercle	AS9G	
7	2	Joint plat d'entrée		
8	2	Roulement		SKF
9	1	Bouchon de remplissage		
10	3	Rondelle d'étanchéité		
11	1	Chapeau arrière	AS9G	
12	6	Vis H m5x12, classe 8.8		
13	1	Voyant de niveau d'huile		
14	1	Bouchon de vidange		
15	2	Flasque à pattes		
16	2	Joint plat de sortie		
17	8	Vis HM6x16, classe 8.8		
18	2	Roulement		
19	2	Joint à 2 lèvres 30x40x7		
20	1	Arbre de sortie		
21	2	Anneau élastique pour arbre		

Document technique DT5a

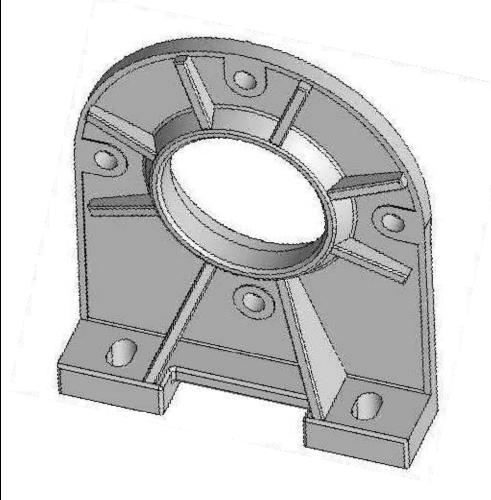
Sujet de l'Examen National du Brev Filière: Mouliste	Frevet de Technicien Supérieur - Session de Mai 2018 - Épreuve de : Conception d'outillage et CAO						
	Formule	Application nume	érique				
Module réel m_n							
Nombre de dents z							
Angle d'helice							
Module apparent							
Diametre primitif							
Largeur de denture							
	Caractéristiques de la	<u>roue</u>					
Module réel m_n							
Nombre de dents z							
Angle d'hélice							
Pas réel							
Pas axial							
Pas d'helice							
Diamètre primitif							
Longueur de la vis							
Entraxe							
<u>Car</u>	actéristiques de la vis s	ans fin					
	Do	ocument Réponse DR	 '2				

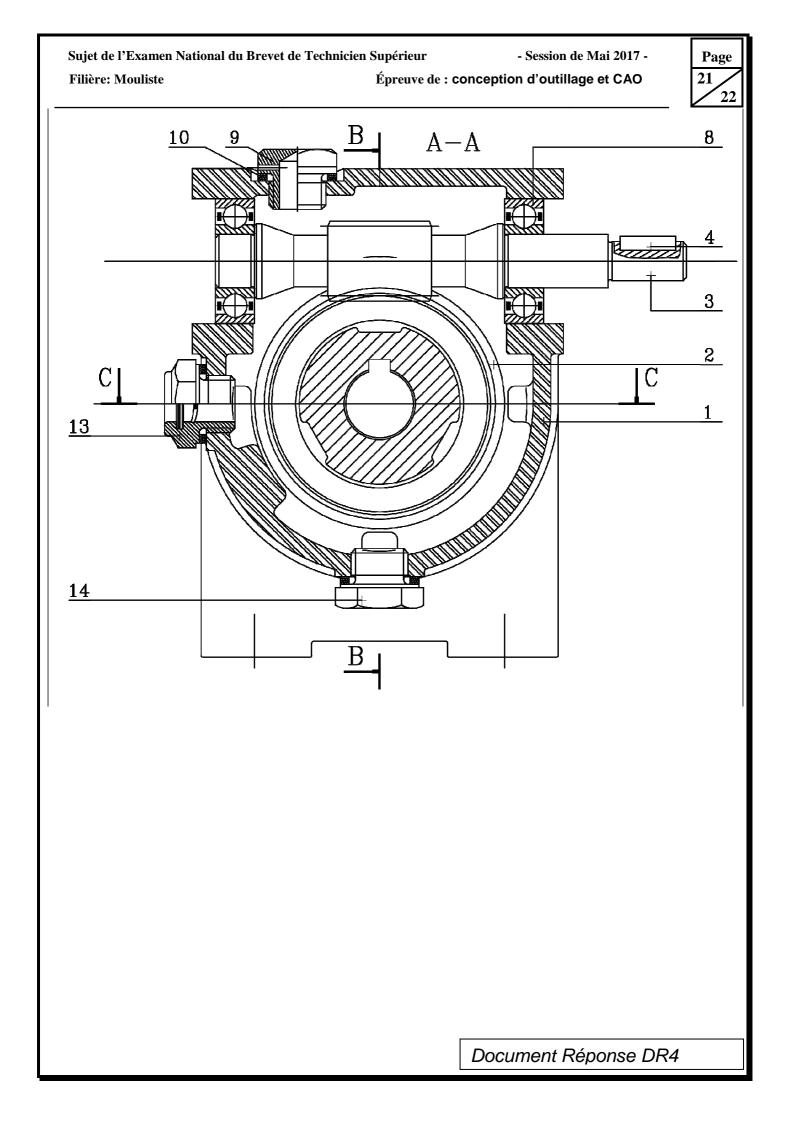

Sujet de l'Examen National du Brevet de Technicien Supérieur

Filière: Mouliste

- Session de Mai 2018 -

Épreuve de : Conception d'outillage et CAO




Filière: Mouliste

Épreuve de : Conception d'outillage et CAO

vue en perspective de couvercle

Filière: Mouliste Épreuve de : conception d'outillage et CAO

Fiche de notation

<u>Tiche de flotation</u>		
Question	Notation	Résultats
PARTIE 2	5.5 points	
2-1	5.5 points	
PARTIE 3	14 5 points	
	14.5 points	
3.1.1	1.5 points	
3.1.2	1 point	
3.1.3	3 points	
3.2.1	1 point	
3.2.2	2 points	
3.3.1	2 points	
3.3.2	1 point	
3.4.1	2 points	
3.4.2	1 point	
PARTIE 4	8points	
4.1.1	1 point	
4.1.2	1 point	
4.1.3	1 point	
4.1.4	1 point	
4.2.1	1 point	
4.2.2	1 point	
4.2.3	1 point	
4.2.4	1 point	
PARTIE 5	12points	
5-1	4 points	
5-2-1	3points	
5-2-2	3points	
5-2-3	2points	
Total	40 points	
I Olai	το μοπιο	