

Examen National du Brevet de Technicien Supérieur Session Mai 2018

- Sujet -

11

Filière :	MOULISTE	Durée :	2 Heures
Épreuve :	Science des matériaux	Coefficient:	15

Le dossier comprend :

- Le sujet (de la page 2/11 à la page 4/11) : couleur blanche
- Documents réponse (de la page 5/11 à la page 6/11) : couleur verte
- Annexes (de la page 7/11à la page 11/11) : couleur jaune

Barème ... /20

PARTIE A

Questions	A-1	A-2	A-3-1	A-3-2	A-4-1	A-4-2
Points	0,5	1,5	2	1	2	2

PARTIE B

Questions	B-1	B-2	B-3	B-4-1	B-4-2
Points	1	1	1	1	2

PARTIE C

Questions	C-1	C-2	C-3
Points	1	2	2

- Les pages portant en haut la mention "Document réponses" (couleur verte) doivent être obligatoirement jointes à la copie du candidat même si elles ne comportent aucune réponse.
- Aucun document n'est autorisé.
- Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 11 pages, numérotées de 1/11 à 11/11.

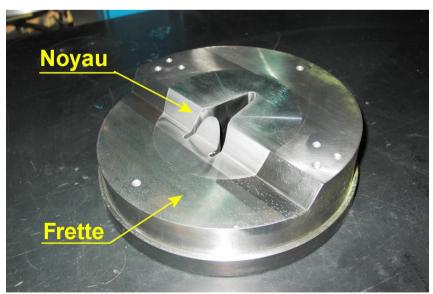
Matériel autorisé :

Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante

Page 2

Filière: MOULISTE Épreuve: Science des matériaux

Présentation de l'objet d'étude


- Étude de la fabrication de fourchette porte injecteur

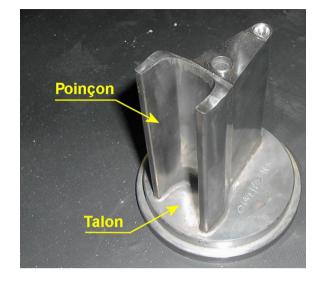
Une entreprise spécialisée dans la conception et la fabrication de pièces obtenues par frittage fabrique, pour l'industrie automobile, des fourchettes porte injecteur. Cette pièce permet de maintenir fermement l'injecteur de carburant sur la culasse. Elle est réalisée en très grande série

- L'outillage de compression inferieur

L'outillage de compression inferieur est constitué d'un noyau en carbure de tungstène fritté, et d'une frette en acier usinée dans la masse. Le diamètre extérieur de l'outillage est égal à 245mm, la hauteur maximale est de 75 mm. Le refroidissement de la frette permettra d'obtenir un assemblage efficace des deux pièces par contraction volumique de la frette. Enfin l'assemblage ainsi formé subira des usinages de finition.

La nuance utilisée pour la frette est le **35NiCrMo16.** Il doit être traité pour une dureté comprise entre **43** et **51 HRC** dans des fours sous vide

Filière : MOULISTE Épreuve : Science des matériaux


- L'outillage de compression supérieur

L'outillage de compression supérieur est constitué d'un poinçon en **X100CrMoV5** et d'un talon en **35NiCrMo16** assemblés par brasage

Après usinage d'ébauche dans un brut cylindrique, le poinçon est traité. Il sera ensuite usiné aux cotes finales avant d'être assemblé avec le talon. On considère que le diamètre équivalent de la pièce ébauchée est égal à 20 millimètres.

- Dureté sur le poinçon : entre 55 et 57 HRC
- Dureté sur le talon : entre 43 et 45 HRC

A. Analyse de la matière

- **A.1.** Donner des avantages et des inconvénients de la fabrication de pièces par frittage.
- A.2. Expliquer les désignations suivantes : (document réponses A)

désignation	significations
35NiCrMo16	
X100CrMoV5	

- **A.3.** On donne les paramètres cristallins des mailles des deux structures cristallines du fer :
 - Fer α (cubique centré) : $\alpha 1 = 286 pm$
 - Fer γ (cubique à faces centrées) : a2 = 356 pm
 - $MFe = 56 \text{ g.} \text{ mol}^{-1}$; $NA = 6.022 \times 10^{23} \text{ mol}^{-1}$; $m = \frac{n.M_{Fe}}{NA}$
 - n: nombre d'atomes
 - $1pm = 10^{-12}m$
 - **A.3.1.** Pour chacune des deux structures : placer les nœuds, donner sa compacité et calculer le rayon atomique du fer ? (**Document réponses A**)
 - **A.3.2.** Calculer la masse volumique du fer dans chacune de deux structures et conclure ? (Document réponses B)

NB: L'étude portera dans la suite du sujet sauf indication sur L'outillage de compression inferieur. De nuance 35NiCrMo16.

- A.4. A l'aide du diagramme binaire métastable Fe-C (voir annexe 1)
 - **A.4.1.**En supposant que cet acier obéit au diagramme binaire Fe C, à 724 °C, quels sont les phases présentes dans cet acier ? Donner leurs compositions chimiques (en % C) et leurs proportions (en %).
 - **A.4.2.** Quelle est la microstructure de cet acier à la température ambiante ? Expliquer pourquoi ?

Page 4 11

Filière: MOULISTE Épreuve: Science des matériaux

B. Traitement thermique de l'outillage de compression inferieur

On cherche à obtenir une dureté comprise entre 43 et 51 HRC pour la nuance d'acier 35NiCrMo16.

- **B.1.** Donner la température d'austénitisation de cet acier.
- **B.2.** D'après le diagramme TRC (**Annexes 2**), quelle est la vitesse de refroidissement de la loi qui permet d'avoir une dureté maximale tout en respectant le cahier des charges ?
- **B.3.** Donner la composition des constituants qui apparaisse successivement ainsi que la dureté HRC obtenue suivant loi de refroidissement N°6.
- **B.4.** Afin de respecter le cahier des charges (avoir une dureté mini de 43HRc) et à l'aide du diagramme de revenu, (Annexe 3,4).
 - **B.4.1.** Donner la température retenue pour ce traitement.
 - **B.4.2.** Déterminer les valeurs finales des caractéristiques A%, Rp0.2, K2 et Rm obtenues à la fin de ce revenu.

c. Traitement thermique de l'outillage de compression supérieur

NB: cette partie s'intéresse au poinçon de nuance X100CrMoV5 (Annexe 1et 5)

- **C.1.** Donner la température d'austénitisation de cet acier.
- **C.2.** Choisir la loi de refroidissement qui vous semble idéale pour la trempe de cet acier.
- **C.3.** Donner la composition des constituants qui apparaisse successivement ainsi que la dureté HRC obtenue suivant cette loi.

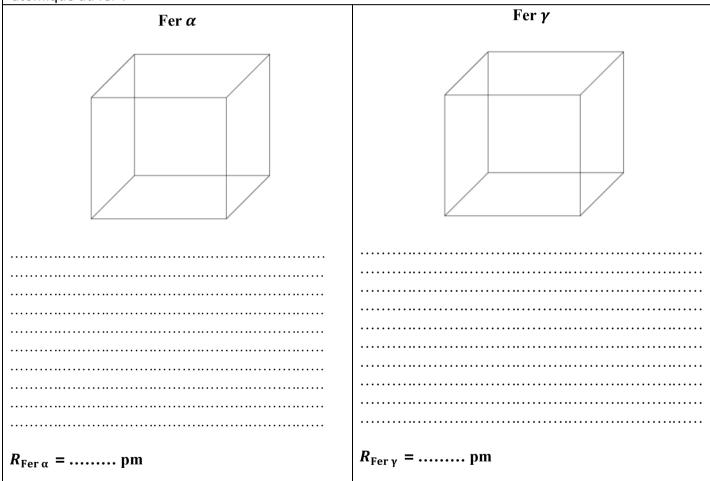
Sujet de l'Examen National du Brevet de Technicien Supérieur
--

- Session Mai 2018-

Ра	ge
5	$\overline{}$
	11

Filière : MOULISTE Épreuve : Science des matériaux

Document réponses A


A.1. Expliquer les désignations suivantes

C=

désignation	significations
35NiCrMo16	
X100CrMoV5	

NB: toutes les distances calculées doivent être en pm La clarté des dessins et la rigueur des démonstrations et du calcul sont exigées

A.3.1 Pour chacune des deux structures : placer les nœuds, donner sa compacité et calculer le rayor
atomique du fer ?

C=

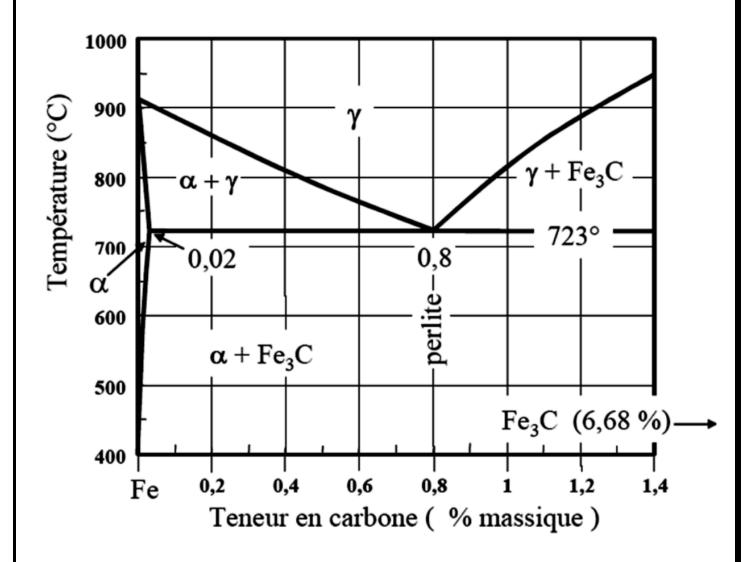
~ 4		1 1	/T	T . 1	1	Brevet de	TET 1		\circ	
5111	et (10 1	'HYAMPH	National	a 11	Krevet de	Lechn	ncien	Superieu	r
Jul	$\sim \iota$	4	LAUIICII	TAUTIOHIUI	uu	DICYCL AC	1 ((111	1101011	Dupciicu.	

- Session Mai 2018-

Ра	ge
6	
	11

Filière : MOULISTE Épreuve : Science des matériaux

Document réponses B

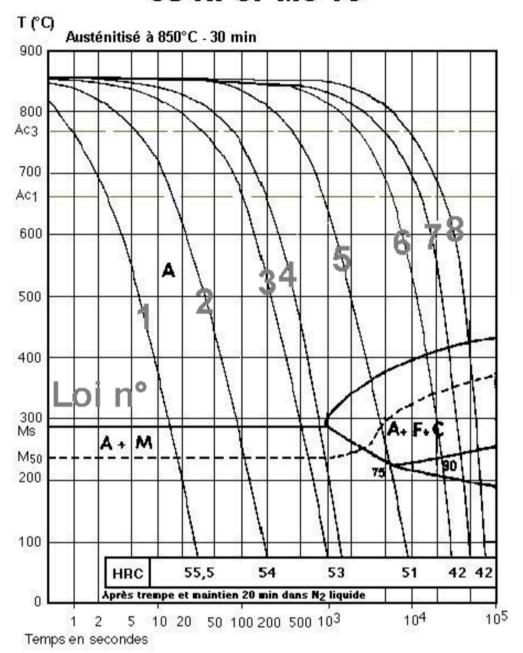

A.3.2 Calculer la masse volumique du fer dans chacune de deux structures et conclure ?				
Fer a	Fer y			
••••	•••			
	•••			
$\rho_{\mathrm{Fer}\alpha} = \dots $	$\rho_{\mathrm{Fer}\gamma} = \dots \dots \dots \dots kg/m^3$			

- Session Mai 2018-

Page 7 11

Filière: MOULISTE Épreuve: Science des matériaux

Annexe 1 : Diagramme Fer-Carbone


Page 8 11

Filière : MOULISTE Épreuve : Science des matériaux

Annexe 2: dossier technique du 35 Ni Cr Mo 16

Diagramme TRC:

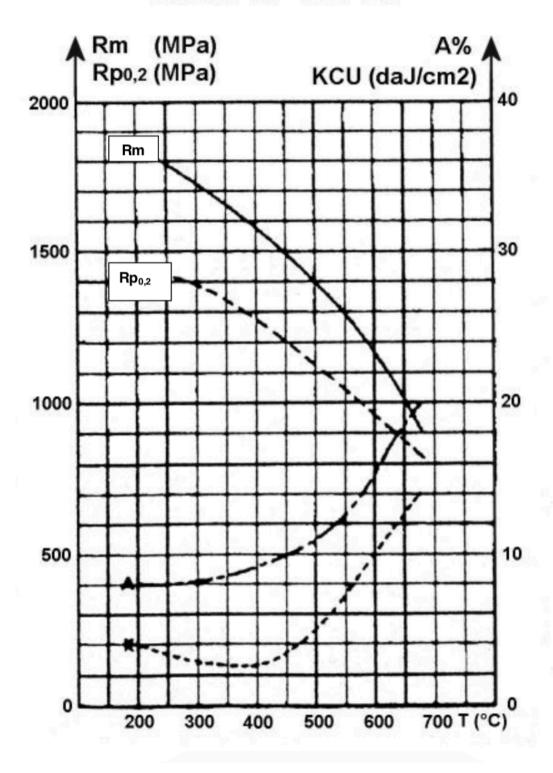
35 Ni Cr Mo 16

Page 9 11

Filière : MOULISTE Épreuve : Science des matériaux

Annexe 3:

Tableau de correspondance Duretés/Résistances mécaniques

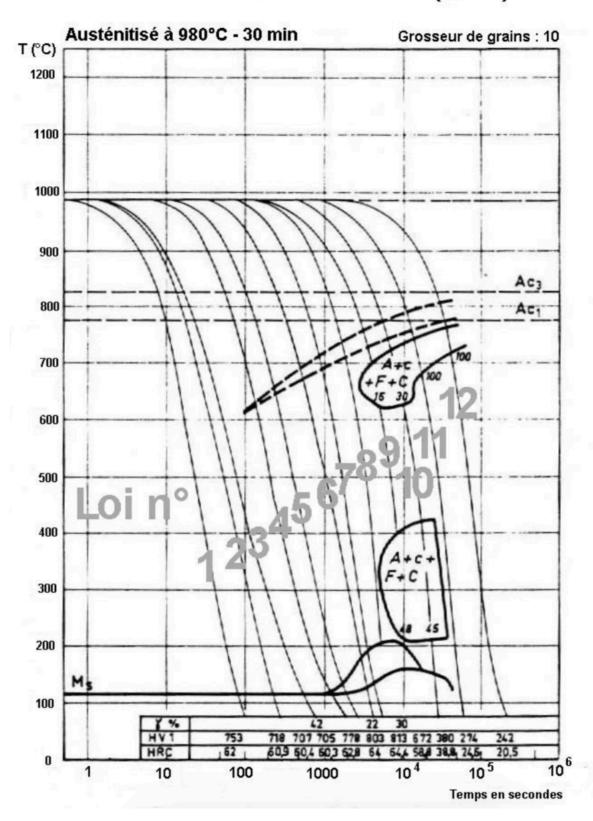

HV30	HBS HBW	HRB	HRC	Rm MPa	HV30	HBS HBW	HRB	HRC	Rm MPa	HV30	HRC
80	76	36		270	280	266		27	890	660	58.5
85	81	42	42 47 52	310	285	271		28	910	670	59
90	85	47		320	290	276		28.5	930	680	59.2
95	90	52		340	295	280		29	940	690	59.7
100	95	56		350	300	285		30	960	700	60
105	100	60		370	310	295		31	990	720	61
110	105	62		380	320	304		32	1020	740	62
115	109	65		390	330	314]	33	1060	760	62.5
120	114	67		410	340	323		34	1090	780	63
125	119	69		420	350	333		35.5	1120	800	64
130	124	71		440	360	342		36.5	1160	820	64.5
135	128	73		450	370	352		38	1190	840	65
140	133	75		470	380	361		39	1220	860	66
145	138	77		480	390	371		40	1260	880	66.5
150	143	79	Non	500	400	380	1	41	1290	900	67
155	147	80	Valable	510	410	390	i	42	1330	920	67.5
160	152	82	dans ce domaine	530	420	399		43	1360	940	68
165	156	83		540	430	409		43.5	1400	960	68.5
170	162	85	İ	550	440	418	Non	44.5	1430	980	69
175	166	86	İ	570	450	428	Valable	45	1470	1000	70
180	171	87	1	580	460	437	dans ce domaine	46	1500		
185	176	88	İ	600	470	447	domanic	47	1540		
190	181	90	İ	610	480	456	1	48	1570		
195	185	91	1	630	490	466	1	48.5	1610	i	
200	190	92	İ	650	500	475	1	49	1650		
205	195	93		660	510	485		50	1680		
210	199	94		680	520	494		50.5	1720		
215	204	95		690	530	504		51	1760		
220	209	96		710	540	513	j	52	1790		
225	214	97		720	550	523		52.5	1830		
230	219	98		740	560	532		53	1870		
235	223	99		750	570	542		53.5	1910		
240	228	100	20	770	580	551	j	54	1940		
245	233		21	780	590	561		54.5	1980		
250	238	1	22	800	600	570		55	2020		
255	242	ĺ	23	820	610	580	ĺ	56	2060		
260	247	1	24	830	620	589		56.5	2100		
265	252	1	25	850	630	599	1	57	2140		
270	257	1	26	860	640	608		57.5	2180		
275	261	1	26.5	880	650	618	1	58	2220	i	

Page 10 11

Filière : MOULISTE Épreuve : Science des matériaux

Annexe 4: diagramme de revenu du 35 Ni Cr Mo 16

35 Ni Cr Mo 16



Page 11 11

Filière : MOULISTE Épreuve : Science des matériaux

Annexe 5: Diagramme TRC du x100crmov5

X 100 Cr Mo V 5 (2231)

